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Abstract

One method for deducing the strength of an acoustic source distribution from measurements of the
radiated field involves the inversion of the matrix of frequency response functions relating the field
measurement points to the strengths of a number of point sources used to represent the source distribution.
This method uses the singular value decomposition (SVD) as the primary analysis tool and has shown some
promise. In the transformation process associated with the SVD, the strength of the discretized point source
can be simply represented by the pressure field and the inversion of corresponding matrix of the frequency
response function and the transformed pressures and source distribution are related by single real numbers
only (i.e., the singular values). Therefore, the resolution and the accuracy of the reconstruction produced by
such inversion methods will be highly dependent on how these small singular values are treated during the
inversion process. In the present work, the emphasis is placed on the description of the inverse method for
the investigation of the characteristics of acoustic sources within a circular duct. Firstly, an analytical
model is developed of the internal field from a finite duct with open ends. An examination is presented of
the capability of the inverse method in dealing with in-duct sound source problems. These guide the design
of an optimal sensor array which can make the condition number as small as possible for the assumed
source distribution. Also, a series of experimental demonstrations are given of the proposed in-duct sensor
array for producing high-resolution information regarding in-duct sources.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The results presented in Refs. [1–4] have demonstrated the spatial resolution and the accuracy
of source strength reconstruction by the application of singular value decomposition (SVD) based
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on an assumed source model. The usefulness of this decomposition stems from the fact that the
SVD can be interpreted in terms of spatial frequency. However, in practice, as described in these
references, regularization is necessary to avoid unstable solutions dominated by the errors
associated with the small singular values in the acoustical frequency response function matrix.
Based on these previous results, this paper applies the inverse method to an initial investigation

of the characteristics of in-duct source distributions with a view to their ultimate application to
aeroacoustic sources such as those associated with the fan of a gas turbine. It would be extremely
beneficial for purposes of noise control design to have information regarding the separate
amplitude and phase of each source component which constitutes such a complex source
distribution.
According to Refs. [5,6], a major source of noise in a ducted fan is the interaction of the blades

with a non-uniform inlet flow, resulting in a dipole-like acoustic source distribution over the plane
of the blades. A monopole source distribution is equivalent to the periodic introduction of mass in
the source plane and simulates the effect of the blade thickness in sound generation by the ducted
fan. Therefore, a sound generator such as a ducted axial fan can be simulated by a distribution of
elemental acoustic sources over a cross-section of the duct. The acoustic pressure generated by a
source distribution within a cylindrical duct can be expressed as the superposition of component
sound waves, which are called ‘‘spinning modes’’ [7–9]. Some of the modes, depending on the
frequency, decay exponentially, and the remainder of the spinning modes propagate along the
duct and produce a radiated sound field. Each higher order spinning mode in the duct fails to
propagate if the frequency falls below the ‘‘cut-off frequency’’. Therefore, in this paper
expressions are developed for the acoustic pressure generated by a source distribution in a finite
duct. It will firstly be assumed that the objective is to provide a good reconstruction of monopole
sources distributed over a duct cross-section, even though it is appreciated that a dipole source
model may be more appropriate to the study of fan noise.
Following the formulation for freefield sound source problems described in Refs. [1–4], when a

real source is modelled by N discrete acoustic sources, the output sensed at M discrete internal
field points on the duct walls can be represented by using the frequency response function matrix
GD: This represents the matrix of complex frequency response functions relating the model
acoustic pressures p to the model complex source strengths q; which can be expressed as

#p ¼ GDqþ e; ð1Þ

where #p denotes the M-dimensional complex vector of the measured acoustic pressures within the
duct and q represents the N-dimensional complex vector of the acoustic source strengths assumed.
It is also assumed that the difference between the model pressure p and the measured pressures #p;
which is caused by various kinds of errors, is expressed as the vector of complex errors given by
e ¼ #p� pð¼ #p�GDqÞ: The estimate of the acoustic source strengths, which is provided by the
minimization of the sum of the squared moduli of the complex errors given by the quadratic cost
function J ¼ eHe; can be written as

q ¼ ½GH
DGD��1GH

D #p; ð2Þ

where the superscript H denotes the Hermitian transpose (complex conjugate transpose).
In practice, since ill-conditioning of the matrix GD is almost inevitable, and thus will often

result in an ill-posed problem, successful reconstruction of the acoustic source distribution cannot
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always be provided by using only the simple least-squares estimation (i.e., Eq. (2)). Hence, most
numerical methods for treating the ill-posed problem seek to overcome the problem associated
with the ill-conditioning of the matrix. In such cases, the solution of the problem approximates the
desired solution and, in addition, is a more satisfactory solution than the least-squares solution.
This can be achieved by incorporating additional constraints to the desired solution, and such
numerical treatments are called regularization methods, and they always include a regularization
parameter which controls the amount of regularization. In this paper, Tikhonov regularization
[10,11], one of a number of regularization methods is introduced in order to enhance the
reconstruction accuracy and its spatial resolution. By the application of Tikhonov regularization,
the general form of the estimate of the acoustic source strength is written as

qR ¼ ðGH
DGD þ bIÞ�1GH

D

� �
#p; ð3Þ

where the subscript R denotes regularized solution and b denotes the chosen Tikhonov
regularization parameter.
This paper illustrates the capability of the inverse method in producing a successful estimate of

acoustic source strengths from measurements made of the radiated field within a cylindrical duct.
In order to improve the spatial resolution and the accuracy of the estimation of the acoustic
source distribution within the duct, this paper suggests methods for improving the conditioning of
the frequency response function matrix GD: The suggested guidelines are demonstrated in practice
under laboratory conditions and the results presented will show that the inverse technique has
some potential for dealing with this kind of the problem. The capabilities of two regularization
parameter-determination methods, generalized cross-validation (GCV) [12,13] and the L-curve
method [14,15], examined in detail in Refs. [2,4] will also be experimentally demonstrated.

2. Model of in-duct sound transmission and radiation

2.1. The acoustic pressure field in a finite cylindrical duct

A hard-wall cylindrical duct is considered, which contains a set of point monopole sources
(which are assumed here to be stationary) with the co-ordinate system illustrated in Fig. 1. It is
assumed that there is no flow. The duct is of constant circular cross-section S with the radius Rd :
Reflections are allowed at both ends which are open and unflanged. When harmonic time
dependence is assumed such that pðr; y; z; tÞ ¼ Refpðr; y; zÞejotg; the acoustic pressure field within
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the duct must satisfy the wave equation. This is given by

ðr2 þ k2Þpðr; y; zÞ ¼ 0; ð4Þ

where k ¼ o=co; o is the angular frequency and co is the sound speed. The solution of Eq. (4) can
be conventionally expressed by a series of spinning modes. This can be written as [7,8]

pðr; y; zÞ ¼
XN

m¼�N

XN
n¼1

bmnðzÞcmnðr; yÞ; ð5Þ

where the indices m and n refer, respectively, to the azimuthal and the radial order of the spinning
mode. The general form of bmnðzÞ for each mode allows for reflected waves and can be written as

bmnðzÞ ¼ Amn e
�jkzþ

mnz þ Bmn e
�jkz�

mnz; ð6Þ

where the unknown constants Amn and Bmn are the complex mode amplitudes of the forward ðkzþ
mnÞ

and backward ðkz�
mnÞ propagating modes, respectively. In Eq. (5), the cylindrical mode shape

function cmnðr; yÞ is given by

cmnðr; yÞ ¼
Jmðkr

mnrÞ
Nmn

e�jmy; ð7Þ

where Jm is the Bessel function of the first kind of integer order m: The radial wavenumber kr
mn is

determined by the hard-wall boundary condition (i.e., ðdp=drÞjr¼Rd
¼ 0) and thus results in the

following condition given by

kr
mnJ

0
mðk

r
mnRdÞ ¼ 0; ð8Þ

where the prime represents the first derivative of the Bessel function. The mode shape functions
cmnðr; yÞ defined by Eq. (7) are orthogonal [16], such thatZ

S

cmnðr; yÞc
�
abðr; yÞ dS ¼

1; for m ¼ a; n ¼ b;

0; for maa; nab:

(
ð9Þ

Substituting the above relationships into Eq. (7) then shows that the normalizing coefficient
Nmn is determined by

N2
mn ¼

Z
S

J2mðk
r
mnrÞ dS: ð10Þ

Meanwhile, for any given m; there are infinitely many values of kr
mnRd that satisfy Eq. (8), and

these are given by the zeros of the Bessel function derivative, J0mðk
r
mnRdÞ: However, only a finite

number of modes can propagate and carry acoustic energy. These are associated with real axial
wavenumbers kz7

mn : For example, substitution of the solution for the acoustic pressure field given
by Eq. (5) into the wave Eq. (4) results in the following relationship between the axial and the
radial wavenumbers, kz7

mn and kr
mn [4,16]:

kz7
mn ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðkr

mnÞ
2

q
: ð11Þ

From the above relationship, if kr
mn is larger than k (here, the axial wavenumber kz7

mn will be
purely imaginary), then the acoustic pressure in Eq. (5) will decay exponentially. Otherwise, there
are a finite number of modes that can propagate within the duct even though the acoustic field
may be described as an infinite series of modes. Hence, there exists a maximum value of kr

mn such
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that the axial wavenumber kz7
mn remains real. This is usually termed the cut-off property for a given

mode, which is defined by kz7
mn ¼ 0:

The analysis presented above provides a framework which is very similar to that based on the
Fourier-based techniques described in Ref. [4] for dealing with the sound radiation problems in a
free field. For example, similar to the case for nearfield acoustical holography (NAH) [17–20],
radiated modes within a duct either propagate or decay exponentially with magnitude of the axial
wavenumber kz7

mn : Hence, in order to realize high-resolution information about in-duct acoustic
sources, the evanescent modes within the duct must be considered. Thus, it is very interesting to
examine the acoustical in-duct inverse source problem of using field data within the duct in order
to obtain an image of the source distribution. Use will be made of the general transformation
process associated with the SVD described in Refs. [1–4]. Therefore, an attempt will be made to
make the connection between the use of the SVD and the spatial resolution of the reconstructed
source image. This has been established in a limited number of cases [16,21], but the following
sections will investigate further the potential for the practical use of the SVD and provide more
fully the physical interpretation of the SVD when applied to in-duct inverse source problems.

2.2. The Green function for a finite cylindrical duct

In order to determine the mode amplitudes Amn and Bmn in Eq. (6), it is necessary to define the
appropriate Green function which links the radiated pressures to the acoustic source within a
cylindrical duct. Here, the Green function for a finite duct is denoted by GðxjyÞ and is assumed to
be of a similar form to the expression given by Eq. (5) for the pressure within a duct. Thus, the
Green function can be written as

GðxjyÞ ¼
XN

m¼�N

XN
n¼1

bmnðzÞcmnðr; yÞ; ð12Þ

where the field point is denoted by the vector xðr; y; zÞ and the source position is denoted similarly
by yðrs; ys; zsÞ: A general form of bmnðzÞ for each mode is given by Eq. (6). Here, the axial
wavenumbers kzþ

mn and kz�
mn correspond to forward propagating waves and backward propagating

waves, respectively, and these are determined by the relation with the radial wavenumber for each
mode, which is given by Eq. (11).
Now, it is necessary to present bmnðzÞ in a form suitable for Eq. (12). The complex ratio

B7
mn e

�jkz�
mnz=A7

mn e
�jkzþ

mnz called the reflection factor, by using the reflection phase ZðzÞ; whose value at
any axial position z is defined by

B7
mn e

�jkz�
mnz

A7
mn e

�jkzþ
mnz

¼ e2jZ
7
mnðzÞ: ð13Þ

and the reflection factor at z ¼ 0; which is called the reflection coefficient (i.e., Bmn=Amn), can be
written as

B7
mn

A7
mn

¼ e2jZ
07
mn ; ð14Þ

where the superscripts 7 for the unknown amplitudes, A7
mn and B7

mn; and the reflection phase
Z7mnðzÞ refer to the regions, respectively, downstream ðz > zsÞ and upstream ðzozsÞ of the source at
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z ¼ zs: Thus, the final form of the reflection phase Z7mnðzÞ for each mode at any axial position z

becomes

Z7mnðzÞ ¼ Z07mn þ kmnz; ð15Þ

where kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðkr

mnÞ
2

q
: Then, substituting Eqs. (13) and (14) into the expression for bmnðzÞ

given by Eq. (6) shows [4] that

b7
mnðzÞ ¼ 2A7

mn e
jZ07mn cosðZ7mnðzÞÞ: ð16Þ

In order to find the general form of b7
mnðzÞ at any axial position z; a ratio of b7mnðzÞ at two

different axial positions on the same side of the acoustic source must be evaluated. The monopole
source considered should radiate equally on either side of the source plane. In such cases, the
acoustic pressure is continuous across the source but there is a discontinuity in particle velocity
[16]. Hence, for a monopole source within a duct, since the modal amplitudes A7

mn will be equal for
all corresponding values of m and n; the general form of b7

mnðzÞ; for any axial position z in the duct,
can be written as [4]

b7mnðzÞ ¼
c�mnðrs; ysÞ

kmn½tanðZþmnðzsÞÞ � tanðZ�mnðzsÞÞ�
cosðZ7mnðzÞÞ
cosðZ7mnðzsÞÞ

: ð17Þ

Finally, substitution of Eq. (17) into Eq. (12) shows that the final expression of the Green
function for the finite duct is given by

G7ðxjyÞ ¼
XN

m¼�N

XN
n¼1

cmnðr; yÞc
�
mnðrs; ysÞ

kmn½tanðZþmnðzsÞÞ � tanðZ�mnðzsÞÞ�
cosðZ7mnðzÞÞ
cosðZ7mnðzsÞÞ

; ð18Þ

where the superscripts 7 refer to the regions, respectively, downstream ðz > zsÞ and upstream
ðzozsÞ of the source ðz ¼ zsÞ: This is the case since the axial pressure gradient on either side of the
source plane follows from Eq. (16) as different values of Z7mnðzÞ apply on the two sides (i.e.,
downstream (z > zs) and upstream ðzozsÞ of the source).

2.3. The Green function for a semi-infinite cylindrical duct

More realistically, consider the situation depicted in Fig. 2 that corresponds to the case of the
experimental fan rig with in which the duct is anechoically terminated on the þz side of the source
plane. In Eq. (18), the vanishing of the reflected waves at the end of the þz side implies that the
imaginary part of ZþmnðzÞ is equal to �N (i.e., the reflection coefficient is equal to zero), and hence
tanðZþmnðzsÞÞ ¼ �j: The Green function therefore becomes

G7ðxjyÞ ¼
XN

m¼�N

XN
n¼1

cmnðr; yÞc
�
mnðrs; ysÞ

�jkmn½1� j tanðZ�mnðzsÞÞ�
cosðZ7mnðzÞÞ
cosðZ7mnðzsÞÞ

: ð19Þ

When measurements are undertaken in the upstream region ðzozsÞ of the source plane (i.e.,
sensors are placed between the source plane and the inlet of the duct), the final expression of the
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Green function for a semi-infinite duct at any axial upstream position z can be written as

GðxjyÞ ¼
XN

m¼�N

XN
n¼1

cmnðr; yÞc
�
mnðrs; ysÞ

�jkmn½1� j tanðZ�mnðzsÞÞ�
cosðZ�mnðzÞÞ
cosðZ�mnðzsÞÞ

for zozs: ð20Þ

Note that this equation allows the existence of waves in both directions in the upstream region.

2.4. Reflection coefficients

In order to finalize the Green function given by Eq. (20), it is necessary to define the value of
ZmnðzÞ as a function of the reflection coefficient Rmn at the inlet in the duct. Here, the coupling
between the incident and the reflected modes is assumed to be neglected at the open end of the
duct. Since a particular (m; n) mode will radiate sound mainly through the direct radiation
resistance Rmn offered by the opening to that mode despite the possibility of coupling with modes
of different radial order, the coupling between modes can often be neglected [22]. Thus, the
reflection coefficient can be defined in a similar way to that given by Refs. [7,8]. In order to define
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this value, use is made of the amplitude ratio at z ¼ 0 between the propagating (or incident) and
reflected modes presented in Eq. (14). The reflection coefficient at any axial position z in the duct
can be written as

Rþ
mnðzÞ ¼

Bþ
mn e

�jk�z
mnz

Aþ
mn e

�jkþz
mnz

¼ e2jðZ
0þ
mnþkmnzÞ ðz > zsÞ; ð21aÞ

1

R�
mnðzÞ

¼
B�

mn e
�jk�z

mnz

A�
mn e

�jkþz
mnz

¼ e2jðZ
0�
mnþkmnzÞ ðzozsÞ: ð21bÞ

Here, a reflection coefficient at the inlet of the duct (i.e., z ¼ �L as found in Fig. 2) is revealed
by setting z equal to �L in Eq. (21b). This is given by

R�
mnð�LÞ ¼ e�2jðZ

0�
mn�kmnLÞ: ð22Þ

This gives

Z0�mn ¼
�logR�

mnð�LÞ
2j

þ kmnL; ð23Þ

and therefore the general expression for ZmnðzÞ in the final Green function (Eq. (20)) considered at
any axial upstream position ðzozsÞ of the acoustic source can be written as

Z�mnðzÞ ¼
�logR�

mnð�LÞ
2j

þ kmnðz þ LÞ for zozs: ð24Þ

In order to provide a reasonable value of reflection coefficient Rmn in Eq. (24), the opening of
the duct considered here is assumed to be flangeless. Although a flanged duct can often be an
adequate model for determining the sound field inside the duct, a flangeless duct [23] is likely to be
a better model for an aircraft engine inlet.
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Fig. 3. Magnitude variations of the singular values of the matrix GD (nine acoustic sources assumed) with respect to the

total number of modes included in calculation of the matrix GD for (a) Lm ¼ �0:1m; (b) Lm ¼ �0:5m, when kRd ¼ 5;
Nr ¼ 1; Ns=r ¼ 9: Key: , 3 (m ¼ 71; n ¼ 1); , 10 (m ¼ 72; n=1–2); , 21 (m ¼ 73; n=1–3); , 36

(m ¼ 74; n=1–4).
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In calculating the reflection coefficient Rmn for the flangeless duct, the Wiener–Hopf technique
[24,25] has been widely used for many years in order to determine the sound reflected into a
cylindrical duct when an acoustic spinning mode is propagating toward the open end of the
cylindrical duct. However, according to Ref. [26], the most complicated aspect of the Wiener–
Hopf technique lies in dealing with complex integrals. The integrals with large parameter values
increase the overall computation of the Wiener–Hopf solution, although the numerical
complications of the exact solution are not as significant for current computational capabilities.
Hence, a simpler approach is desired that can reproduce an accurate representation of the exact
solution while reducing the numerical and analytical complexities that arise when using the
Wiener–Hopf technique. Therefore, an approximate formula has been introduced as presented
recently by Hocter [26]. Briefly, the approach simplifies the complex integral by using the method
of steepest descent. Although numerical integration for providing the accurate approximate
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solution of the exact Wiener–Hopf solution is still required, it is significantly less complicated than
the exact solution. Details of practical applications have been presented in references [4,26,27].
Therefore, the general expression of ZmnðzÞ; Eq. (24), at any axial upstream position ðzozsÞ of the
acoustic source can be estimated by using this approximate formula.

3. Conditioning of the frequency response function matrix for the duct acoustic model

Consider the hard-walled semi-infinite duct depicted in Fig. 2, where the source is simply
assumed to consist of a number of point monopole sources. The M discrete acoustic pressures in
the upstream region of the duct are related to the N discrete source strengths via the frequency
response functions. These are written in matrix form:

GD ¼

Gðx1jy1Þ Gðx1jy2Þ ? ? Gðx1jyNÞ

Gðx2jy1Þ Gðx2jy2Þ ? ? Gðx2jyNÞ

? ? ? ? ?

? ? ? ? ?

GðxM jy1Þ GðxM jy2Þ ? ? GðxM jyNÞ

2
6666664

3
7777775
; ð25Þ
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where each element GðxM jyNÞ obtained from Eq. (20) is the Green function between measured
pressure at discrete field point xM and a point source at yN :
In order to illustrate the main factors affecting the conditioning of the matrix GD; an assumed

geometrical arrangement of sensors and sources within the duct depicted in Fig. 2 has been used.
Here, it is assumed that nine radiating point monopole sources at the axial position z ¼ 0 are
placed at the radial distance from the centre of the duct (i.e., rs ¼ 0:15m¼ 0:48Rd ) at equal
circumferential increments. The sensor array is comprised of a number of rings, Nr with a
separation distance between them of Dz: Here, each ring contains a certain number of sensors,
Ns=r; and the sensors are mounted flush on the duct wall. The closest of the sensor rings to the
source plane is located at z ¼ �Lm:
Firstly, for illustrative purposes, the measurements are assumed to be undertaken by only the

single ring at a frequency corresponding to kRd ¼ 5: Fig. 3 shows magnitude variations of
singular values in the frequency response function matrix GD to be inverted with respect to the
total number of modes included in calculation of the matrix. In this figure, as the total number of
modes considered increases, the singular values si decay gradually and continuously. However,
when only a small number of the modes are included in the calculation of the matrix GD; the
distribution of the singular values includes a sudden jump in value, and thus the condition number
of the matrix GD becomes much higher than that when a large number of modes are included.
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Therefore, in order to reduce the condition number kðGDÞ; it seems to be necessary to consider
cut-off modes (i.e., evanescent modes).
In order to better illustrate this point, consider a multi-ring sensor array, since it often is

impractical to use only a single ring for a large number of sensors. For example, as depicted in
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Fig. 4, the multi-ring sensor array is assumed to have three rings ðNr ¼ 3Þ separated by a distance
Dz ¼ 0:1 m apart, each containing 16 sensors (Ns=r ¼ 16), and the closest ring from the acoustic
sources is located at Lm ¼ �0:5 m: As shown in Fig. 4, when the evanescent modes as well as the
propagating modes are included in calculation of the matrix GD; it is clearly found that the
conditioning of the matrix is much improved in the range of small non-dimensional frequencies
below a certain frequency. The critical frequency is higher as the number of the assumed acoustic
sources increases. However, if only propagating modes are considered, the condition number
kðGDÞ of the matrix GD is suddenly increased at the cut-off frequency. This represents clear
evidence that in order to reduce the sensitivity to various kinds of errors, the evanescent modes
must be considered. This may be very helpful in increasing the spatial resolution of the source
reconstruction process. Otherwise, the condition number kðGDÞ of the matrix GD becomes large
and poor conditioning will result in the amplification of any errors, particularly in the relatively
low non-dimensional frequency range. Note that the desirability of sensing evanescent modes is in
contrast to that associated with the active control problem [28,29].
The most important parameter to be expected to have a crucial influence on the conditioning of

the matrix GD is thus the axial distance between the source plane and the sensor plane. As shown
in Fig. 5, as the axial separation jLmj between the source and measurement positions is increased,
the conditioning of the matrix GD to be inverted becomes worse, particularly at low values of
Rd=l: Whereas, at relatively high values of Rd=l (for example when Rd=l is bigger than 0.63
approximately which is the non-dimensional cut-off frequency in the case investigated), the
conditioning of the matrix GD is insensitive to the axial distance between the source and the
measurement positions. Thus, in order to capture the evanescent modes associated with high
spatial frequencies, measurements must be undertaken in the field close to the acoustic source
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plane. This is exactly consistent with the known behaviour of planar NAH described in Ref. [20].
Therefore, the resolution and the accuracy of the reconstruction of in-duct source distribution
may also be highly dependent on how these small singular values associated with the evanescent
modes are treated during the inversion process.
Another factor affecting the conditioning of the matrix GD to be considered is the assumed

number of model sources and number of measurement positions. Firstly, as illustrated in Fig. 6,
the matrix GD to be inverted tends to become more ill-conditioned as the number of the assumed
acoustic sources increases. As might be expected, when the number of the acoustic sources
assumed becomes larger than the number of sensors per ring Ns=r (in this case, Ns=r ¼ 16), the
condition number kðGDÞ of the matrix GD suddenly increases in magnitude. The number of
measurement positions is therefore subject to the constraint that Ns=r is more than at least the
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assumed number of the acoustic sources Ns: As shown in Fig. 7, when the equivalent number of
sensors is used, very similar variation of the condition number kðGDÞ is exhibited even for
different configurations of the wall-mounted sensors in the form of a number of sensor rings
uniformly distributed along the length of the intake duct. Also, even when the sensor array is close
to the assumed source plane, very similar results are produced. As illustrated in Fig. 8, the
conditioning of the matrix GD seems to be insensitive to the number of sensor rings Nr when each
ring contains at least the same number of sensors per ring as that of the assumed sources.

4. Experimental verification of the reconstruction of in-duct acoustic source strength

4.1. Experimental system

The work presented in the previous section has shown that the inverse technique may still be
useful for dealing with in-duct sound source problems, since the exponentially decaying cut-off
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Fig. 13. Reconstruction results (d, true; 3, reconstructed), when the radiated field is generated by one real acoustic

source of 12 model sources and Rd=l ¼ 0:1 (106Hz). The sound field is measured with one sensor ring (Nr ¼ 1)
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modes which contain high-resolution information about the acoustic sources are associated with
the small singular values of the matrix GD: It has been shown through the numerical simulations
presented that measurements should be undertaken in the near field of the acoustic source in order
to capture the evanescent modes. This should enable the production of greater spatial resolution
of the source distribution. It therefore is useful to show a practical demonstration of these results
and to see how the inverse technique considered here works in practical applications.
The experiments described below make use of a fan test rig, which consists of a ducted fan with

a low distortion inlet and an anechoic outlet as depicted in Figs. 9 and 10 (the outline dimensions
of the fan rig are shown in Fig. 2). Here, instead of the ducted fan, 12 volume velocity sources are
assumed to be evenly distributed at rs ¼ 0:243m: This is illustrated in Fig. 11. Real volume
velocity sources of 12 model sources generate the sound field inside the duct, where two small
loudspeakers are mounted on the same axial position as the inducted fan. The details of the real
sources, such as their locations and strengths are assumed unknown and thus it is assumed that
there are 12 model sources. The loudspeakers are driven individually by complete different
random signals which cover all frequencies within the bandwidth of the measurement system. The
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Fig. 14. Reconstruction results (d, true; 3, reconstructed), when the radiated field is generated by one real acoustic

source of 12 model sources and Rd=l ¼ 0:15 (159Hz). The sound field is measured with one sensor ring (Nr ¼ 1)

containing 12 sensors (Ns=r ¼ 12) when (a) Lm ¼ �0:05m and b ¼ bGCV ; (b) Lm ¼ �0:05m and b ¼ bLCV ;
(c) Lm ¼ �0:35m and b ¼ bGCV ; (d) Lm ¼ �0:35m and b ¼ bLCV :
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source strength of each real source was calibrated by the farfield acoustic pressures which is
measured by sensors at a known distance away from the sources, and the calibration process is
described in Ref. [4]. The calibrated real sources are individually driven by random signals and
their details such as locations and volume velocities are assumed to be unknown.
The sensor array depicted in Fig. 9 consists of five rings separated by distance Dz ¼ 0:1 m and

each ring supports a maximum of 24 sensors (i.e., Ns=r ¼ 24) mounted flush on the duct wall
parallel to the cross-section. The measured field data and the input signals for driving the
loudspeakers are simultaneously stored through multi-channel digital tape recorder as shown in
Fig. 9. All the electret microphones used were calibrated in situ because the sensitivity of the
microphone may be changed by its mounted condition.

4.2. Reconstruction of volume velocity sources using experimental data

For experimental reconstruction of the volume velocity source distribution within the
duct, measurements of internal acoustic pressures have been undertaken with the experimental
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Fig. 15. Reconstruction results (d, true; 3, reconstructed), when the radiated field is generated by one real acoustic

source of 12 model sources and Rd=l ¼ 0:25 (270Hz). The sound field is measured with one sensor ring (Nr ¼ 1)
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system illustrated in Figs. 9 and 10. In the experimental process, the theoretical Green function
given by Eq. (20) has been used for the frequency response relations between the internal pressures
and the assumed source distribution within the duct. In this section, the results of a series of
reconstructions using the experimental data are presented, and some practical considerations
are addressed of the regularization parameter-determination methods (i.e., GCV and the L-curve
method).
As observed from the results simulated in the previous section, it is easily recognized that the

essence of the successful reconstruction of acoustic source distribution lies in keeping the
condition number as small as possible by adjusting the geometrical arrangement of discretized
model sources and sensors. Therefore, it is valuable to examine the main factor affecting the
conditioning of the matrix GD described in Section 3 for the practical case investigated here,
even though it is not straightforward to express quantitatively the boundary of large and
small condition numbers. Fig. 12 shows the effect of the axial separation jLmj between the
source plane and the sensor plane on the reconstruction results with the experimental cases
investigated, when only one real source of 12 model sources depicted in Fig. 11 generates the
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Fig. 16. Reconstruction results (d, true; 3, reconstructed), when the radiated field is generated by two real acoustic

source of 12 model sources and Rd=l ¼ 0:1 (106Hz). The sound field is measured with one sensor ring (Nr ¼ 1)

containing 12 sensors (Ns=r ¼ 12) when (a) Lm ¼ �0:05m and b ¼ bGCV ; (b) Lm ¼ �0:05m and b ¼ bLCV ;
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sound radiated field. Note that the reconstructed source distribution is provided by Tikhonov
regularization. For the real source, the calibrated loudspeaker is used and thus the strength of the
real source is known. In Fig. 12(a), the better conditioning of the matrix GD is exhibited as the
sensor plane is close to the acoustic sources, particularly in the region of small Rd=l: The results of
the reconstruction of the acoustic source distribution are shown in Fig. 12(b) for jLmj ¼ 0:05m
and it is clear that a better reconstruction is produced compared with that shown in Fig. 12(c) for
jLmj ¼ 0:35m.
Figs. 13–15 show the real and experimentally reconstructed source distributions with

GCV and the L-curve method with one ring sensor array (Nr ¼ 1)) which contains 12 sensors
(Ns=r ¼ 12) and which is located at Lm ¼ �0:05m (which is the closest position from the
sources in the experimental models). The radiated sound field is generated by only one
unknown source of 12 assumed sources. Firstly, at Rd=l ¼ 0:1 (106Hz) shown in Fig. 13,
the real source location cannot be distinguished at all, even when the acoustic pressures
measured are regularized with the regularization parameters, bGCV provided by GCV
and bLCV provided by the L-curve method, during the inversion processes. Furthermore, the
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Fig. 17. Reconstruction results (d, true; 3, reconstructed), when the radiated field is generated by two real acoustic

source of 12 model sources and Rd=l ¼ 0:15 (159Hz). The sound field is measured with one sensor ring (Nr ¼ 1)

containing 12 sensors (Ns=r ¼ 12) when (a) Lm ¼ �0:05 and b ¼ bGCV ; (b) Lm ¼ �0:05m and b ¼ bLCV ;
(c) Lm ¼ �0:35m and b ¼ bGCV ; (d) Lm ¼ �0:35m and b ¼ bLCV :

Y. Kim, P.A. Nelson / Journal of Sound and Vibration 275 (2004) 391–413410



magnitudes of the reconstructed results are very inaccurate compared with the true source
strength.
However, when Rd=l ¼ 0:15 (159Hz), as shown in Fig. 14, the closest sensor array from the

acoustic sources can reveal exactly the location of the unknown real source by the application
of Tikhonov regularization. Here, the L-curve method can accurately reconstruct the strength
of the unknown source. In the case investigated, the L-curve method provides more a reason-
able regularization parameter than GCV. When Rd=l ¼ 0:25 (270Hz) in Fig. 15, the real
source can be distinguished clearly with reasonable accuracy by the use of Tikhonov
regularization.
When the radiated sound field is generated by two unknown real sources, it is interesting to see

whether the sensor array can still be effective in providing high-resolution estimation of the
strengths of the unknown real sources. Figs. 16–18 demonstrate very similar resolution limits for
the reconstruction of the acoustic source strength distribution, even when two real sources are
operating. In other words, similarly to the cases for one unknown real source, better spatial
resolution can be seen as the sensor array is placed close to the acoustic sources.
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Fig. 18. Reconstruction results (d, true; 3, reconstructed), when the radiated field is generated by two real acoustic

source of 12 model sources and Rd=l ¼ 0:25 (270Hz). The sound field is measured with one sensor ring (Nr ¼ 1)

containing 12 sensors (Ns=r ¼ 12) when (a) Lm ¼ �0:05 and b ¼ bGCV ; (b) Lm ¼ �0:05m and b ¼ bLCV ;
(c) Lm ¼ �0:35m and b ¼ bGCV ; (d) Lm ¼ �0:35m and b ¼ bLCV :
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5. Conclusions

In this paper, an analytical model has been used for the internal field of a semi-infinite duct with
an open end. The internal acoustic field generated by a source within the circular duct can be
constructed from an infinite series of modes, which are partially reflected at the end of the duct.
This analytical model, which offers great potential flexibility in dealing with this kind of the
problem, has been used to examine practically the capability of the inverse technique considered.
Initially, using the analytical model, it has been demonstrated by means of the SVD that ill-
conditioning is usually provided by the small singular values of the matrix GD in in-duct sound
source problems. It has been shown that the small singular values in the matrix GD are associated
with evanescent modes containing high spatial frequency information associated with the acoustic
source distribution. These are very similar to the results of the SVD analysis used for investigating
the spatial resolution of reconstructed source images in freefield radiation. As a result of
numerical simulations, it has been shown that the ill-conditioning of the matrix GD can be
overcome by consideration of evanescent modes within the duct and thus measurements must be
undertaken in the field close to the acoustic sources. Also, for the case investigated here, it has
been shown that the conditioning of the matrix GD can be much improved when a relatively small
number of sources is assumed. Results have been presented of practical investigations of the
abilities of two different regularization parameter-determination methods (GCV and the L-curve
method). Through a series of experimental reconstructions, it has been demonstrated that greater
spatial resolution of the acoustic source distribution can be realized by the use of measurements
undertaken close to the sources.
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